DETERMINING THE TEMPERATURE-DEPENDENCE OF
THE THERMOPHYSICAL PROPERTIES OF SOLIDS BY
THE METHOD OF SUCCESSIVE APPROXIMATIONS

G. N. Surkov UDC 536.2.022

The nonlinear heat conduction problem is solved by the method of successive approximations
and, in connection with it, the feasibility of determining the temperature characteristics of
the thermophysical properties is also considered.

Present nonstationary methods of determining the thermophysical characteristics are based on solv-
ing the linear equation of heat conduction, which limits their applicability insofar as the operating tem-
perature range must be sufficiently narrow: the more strongly the thermophysical properties depend on
the temperature, the narrower must that rangebe. In order to extend the applicability of nonstationary
methods, it is necessary to solve nonlinear equations of heat conduction.

Various approximate methods of solving nonlinear equations are known, but only a few of them are
suitable for the determination of thermophysical characteristics. The method of a small parameter was
used in [1-4], the method of integral substitutions was used in [5], and in [6, 7} the temperature field was
sought in ferms of power and functional series.

In this article we will use the solution to the nonlinear equation of heat conduction which has been
obtained by the method of successive approximations.

The equation of heat conduction
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we may write Eq. (4) as follows:
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Accordingly, the constraints will become
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Applying the integral transformation
. K

T = Y 6 cos p,x dx (12)
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to the system of Eqgs. (8)-(11), we obtain the nonlinear first-order ordinary differential equation in T
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with the zero boundary value: : .
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where u, are the roots of the characteristic equation
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and the temperature expressed as
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k=1
is obtained from the inversion
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n=1
corresponding to the integral transformation (12). Equation (13) with the initial condition (14) will now be
solved by successive approximations. As the zeroth approximation we take the solution to the equation
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Inserting this into the right-hand side of Eq. (13), we obtain the linear differential equation
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whose solution with the initial condition
T, lpomo = 0 (22)
represents the first approximation to Eq. (13).

Continuing this process, we obtain the solution to the i~th approximation in the form
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where P, are the roots of the characteristic equation
oS iy, = 0. (24)
From here the inversion formula
0, (x, Fo) = 2 2 T.(n;, Fo) COSMni}, (25)

;=1
yields the final solution to the i-th approximation in the form
0; (x, Fo) = B, (¥, Fo) + Aufy¢ (x, Fo) 4+ -+ AEVf, 4(x, Fo) -+ - +c¥f, (v, Fo), (26)

where fm,i(;(, Fo), ¢(i), and (i) are functions determined from solution (25) with m > 2k. Solution (26)
will be called a formal solution, since it is not feasible to prove the equality

lim 6, (x, Fo) — 0 (¢, Fo) @)

on account of its unwieldiness. We will show how solution (26) can be used for determining the thermal
conductivities and the specific heat. We assume that the temperature field at point x = 0 is known from
tests. Then setting up a system of m algebraic equations for point X = 0 with Fo = Fo,, Fo,,..., Fon,

8, (0, Fo,) = 6,(0, Fo,) - Ayfy,; (0, Foy) +- -+ a7, . (0, Foy),
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and applying to them the Cramer rule, we find onl;z the c;mstants Xis Agy ..., AK; Cis Cgy- .., Ck, because
(i) =o{

it is not necessary to determine the constants 7\1? ,» ¢ and all their possible combinations for this par-

ticular case. Assuming A, and ¢, to be given, from constants Ay, ci we find constants Ay, ck within an
accuracy defined by the condition that

lim |6, (x, Fo) —8;_,(x,Fo) | = 0 (29)

at any point M(x, Fo). Inserting the value for Ay and ¢y into Egs. (2) and (3), we find the sought tempera-
ture-dependence of thermal conductivity and specific heat.

We will now analyze the case where the temperature-dependence of thermal conductivity is assumed
given and the temperature drop from point X = 0 to point X = 1 is negligible at any instant of time. Then,

with the substitution
t

0= [re—wae—n )

and considering that the thermal diffusivity varies according to

a(®) = a, — A9, (31)
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we may rewrite Eqgs. (8)-(11) as
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where A = Alay.

The solution to systems (32)-(35) at point X = 0, (°/4)Fo = 1 yields
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P(n;, my, n,} and P(m,, my, m,) are defined analogously

1 .
Falto B 1) = o i1y (0 [ B DI = G =

1
(@n; — 1)*— (2my— 1)~ (21 — 1)?

(exp [— (21— 1)>— (2ng — 1)*] —exp [— @2n, — 1)%); (39)

502



1 1
where the terms Fy(ng, my, ny), Fslng, 0y, ng, my, 0y), Fylmg, my, my, ny, 0y), Fglng, ng, 04, mg, My, my, 0y)
will not be written out explicitly because of their unwieldiness.

Solutions (36)-(37) indicate that the terms under the summation signs do not depend on te_st values.
Therefore, they can be calculated beforehand for any given case. For instance, in our case (x = 0,
(7r2/4)Fo = 1) these terms were calculated on a Minsk-22 computer:
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with &; = 0.8645563, &, = O,_4184884, o; = 0.2123648, &4 = 0.3629164, &, = 0.1836947. For most materials
one may let 8q/7* = 50 and A = 0.002 so that A%(8q/x)*(1/7%)&; = 0.000296. This shows that formula (41)
is suitable for determining the thermal diffusivity with an accuracy entirely satisfactory for all practical
purposes. '

In an experiment with an infinitely large plate R = 11.22 mm thick and made of polymethylmethacry-
late (density p = 1282 kg/m?, a, = 1.08335- 107" m?/sec and A (t~ty) = 0.181605 + B(i—t,) W/m-°C, the
value of 851/1r2 was 59.654424. On the basis of these data, the first and the second approximation to A were
found respectively from the linear and the quadratic equation in A of (41), i.e.,

A= 107%.2.208, 4, = 1072.2.187,

and from here, taking into account expressions (26) and (27), we have the thermal diffusivity as a function
of the temperature: ’

a(t—ty) :go[ I—Eg(z‘_to)+ 21} Bt —ty)? ] (42)

0

where B = 0.000277 and t; = 7°C, which agrees within 5% with the data obtained at the VNIIM. Continuing
in this manner, one can find coefficient Ki from the solution (0, Fo)l (72/4)Fo=t within an accuracy defined
by condition (29).

This example shows that in our case it suffices to find A-z- We note that the proposed method is ap-
plicable also where the thermophysical characteristics of solid cylinders or spheres are to be determined
in either a one-dimensional or a two-dimensional analysis of the problem.
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